Part Number Hot Search : 
C2139 BC817 SAA7196H E000916 2SK301 SURCK 10310 DS2120A
Product Description
Full Text Search
 

To Download DG2018 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 DG2018/2019
New Product
Vishay Siliconix
Low Voltage, Dual DPDT and Quad SPDT Analog Switches
FEATURES
D Low Voltage Operation (1.8 V to 5.5 V) D Low On Resistance - rDS(on) : 6 W @ 2.7 V D Low Voltage Logic Compatible - DG2019: VINH = 1 V D High Bandwidth: 150 MHz D QFN-16 Package
BENEFITS
D Ideal for Both Analog and Digital Signal Switching D Reduced Power Consumption D High Accuracy D Reduced PCB Space D Fast Switching D Low Leakage
APPLICATIONS
D D D D D Cellular Phones Audio and Video Signal Routing PCMCIA Cards Battery Operated Systems Portable Instrumentation
DESCRIPTION
The DG2018 and DG2019 are low voltage, single supply analog switches. The DG2018 is a dual double-pole/double-throw (DPDT) with two control inputs that each controls a pair of single-pole/double-throw (SPDT). The DG2019 uses one control pin to operate four independent SPDT switches. When operated on a +3-V supply, the DG2018's control pins are compatible with 1.8-V digital logic. The DG2019 has an available feature of a VL pin that allows a 1.0-V threshold for the control pin when VL is powered with 1.5 V. Built on Vishay Siliconix's low voltage submicron CMOS process, the DG2018 and DG2019 are ideal for high performance switching of analog signals; providing low on-resistance (6 W @ +2.7 V), fast speed (Ton, Toff @ 42 ns and 16 ns), and a bandwidth that exceeds 150 MHz. The DG2018 and DG2019 were designed to offer solutions that extend beyond audio/video functions, to providing the performance required for today's demanding mixed-signal switching in portable applications. An epitaxial layer prevents latch-up. Brake-before-make is guaranteed for all SPDT's. All switches conduct equally well in both directions when on, and blocks up to the power supply level when off.
FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION
DG2018DN QFN-16 (3 X 3)
COM1 NO1 16 15 V+ 14 NC4 13
TRUTH TABLE
IN1, IN2 Logic
0 1
NC1 and NC2
ON OFF
NO1 and NO2
OFF ON
NC1 IN1, IN2 NO2 COM2
1 2 3 4
12 11 10 9
COM4 NO4 IN3, IN4 NC3
IN3, IN4 Logic
0 1
NC3 and NC4
ON OFF
NO3 and NO4
OFF ON
5 NC2
6 GND
7
8
ORDERING INFORMATION Temp Range
-40 to 85C
NO3 COM3
Package
QFN-16 (3 x 3 mm)
Part Number
DG2018DN www.vishay.com
Top View Document Number: 72342 S-31644--Rev. A, 01-Aug-03
1
DG2018/2019
Vishay Siliconix
New Product
FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION
DG2019DN QFN-16 (3 X 3)
COM1 NO1 16 15 V+ 14 NC4 13
TRUTH TABLE
Logic
0 12 11 10 9 COM4 NO4 VL NC3 1
NC1, 2, 3, and 4
ON OFF
NO1, 2, 3, and 4
OFF ON
NC1 IN NO2 COM2
1 2 3 4
ORDERING INFORMATION Temp Range
-40 to 85C
Package
QFN-16 (3 x 3 mm)
Part Number
DG2019DN
5 NC2
6 GND
7
8
NO3 COM3
Top View
ABSOLUTE MAXIMUM RATINGS
Reference to GND V+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +6 V IN, COM, NC, NO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to (V+ + 0.3 V) Continuous Current (Any terminal) . . . . . . . . . . . . . . . . . . . . . . . . . . . "50 mA Peak Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "100 mA (Pulsed at 1 ms, 10% duty cycle) Storage Temperature (D Suffix) . . . . . . . . . . . . . . . . . . . . . . . . . . -65 to 150C Power Dissipation (Packages)b QFN-16 (3 x 3 mm)c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 850 mW Notes: a. Signals on NC, NO, or COM or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings. b. All leads welded or soldered to PC Board. c. Derate 4.0 mW/_C above 70_C
www.vishay.com
2
Document Number: 72342 S-31644--Rev. A, 01-Aug-03
DG2018/2019
New Product
SPECIFICATIONS (V+ = 3 V)
Test Conditions Otherwise Unless Specified Parameter Analog Switch
Analog Signal Ranged On-Resistance rON Flatness rON Match Between Channels Switch Off Leakage Current VNO, VNC, VCOM rON rON Flatness DrON INO(off), INC(off) ICOM(off) Channel-On Leakage Current ICOM(on) V+ = 2.7 V, VCOM = 0.2 V/1.5 V INO, INC = 10 mA V+ = 2.7 V VCOM = 0 to V+ INO, INC = 10 mA V+, Full Room Full Room Room Room Full Room Full Room Full -1 -10 -1 -10 -1 1.0 0 6 0.5 0.6 0.3 0.3 0.3 V+ 12 15 2 3 1 10 1 10 1 10 nA W V
Vishay Siliconix
Limits
-40 to 85_C
Symbol
V+ = 3 V, "10% (DG2018 Only) VIN = 0.5 or 1.4 Ve (DG2019 Only) VL = 1.5 V, VIN = 0.4 or 1.0 Ve
Tempa
Minb
Typc
Maxb
Unit
V+ = 3.3 V, VNO, VNC =0.3 V/3 V VCOM = 3 V/ 0.3 V V+ = 3.3 V, VNO, VNC = VCOM = 0.3 V/ 3 V
Digital Control
Input High Voltage Input Low Voltage Input Capacitance Input Current
VINH
DG2018 VL = 1.5 V VL = 1.5 V f = 1 MHz VIN = 0 or V+ DG2019 DG2018 DG2019
Full Full Full Full Full Full
1.4 1.0 0.5 0.4 9 -1 1 pF mA V
VINL
Cin
IINL or IINH
Dynamic Characteristics
Turn-On Time Turn-Off Time Break-Before-Make Time Charge Injectiond Off-Isolationd Crosstalkd NO, NC Off Capacitanced Channel-On Channel On Capacitanced tON VNO or VNC = 2.0 V, RL = 300 W CL = 35 pF 20V W, tOFF td QINJ OIRR XTALK CNO(off) CNC(off) CNO(on) CNC(on) VIN = 0 or V+ f = 1 MHz V+, VNO or VNC = 2.0 V, RL = 50 W, CL = 35 pF CL = 1 nF, VGEN = 0 V, RGEN = 0 W RL = 50 W CL = 5 pF f = 1 MHz W, pF, Room Full Room Full Full Room Room Room Room Room Room Room 1 -1.46 -54 -53 9 9 30 30 pF pC dB 42 16 55 65 25 35 ns
Power Supply
Power Supply Current Notes: a. b. c. d. e. Room = 25C, Full = as determined by the operating suffix. Typical values are for design aid only, not guaranteed nor subject to production testing. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet. Guarantee by design, nor subjected to production test. VIN = input voltage to perform proper function. I+ VIN = 0 or V+ Full 0.01 1.0 mA
Document Number: 72342 S-31644--Rev. A, 01-Aug-03
www.vishay.com
3
DG2018/2019
Vishay Siliconix
SPECIFICATIONS (V+ = 5 V)
Test Conditions Otherwise Unless Specified Parameter Analog Switch
Analog Signal Ranged On-Resistance rON Flatness rON Match Between Channels VNO, VNC, VCOM rON rON Flatness DrON INO(off), INC(off) ICOM(off) Channel-On Leakage Currentf ICOM(on) V+ = 4.5 V, VCOM = 3 V, INO, INC = 10 mA V+ = 4.5 V VCOM = 0 to V+, INO, INC = 10 mA V+ Full Room Full Room Room Room Full Room Full Room Full -1 -10 -1 -10 -1 -10 0 4 0.6 0.6 0.03 0.03 0.03 V+ 8 10 1.2 1.2 1 10 1 10 1 10 nA W V
New Product
Limits
-40 to 85_C
Symbol
V+ = 5 V, "10%, (DG2018 Only) VIN = 0.8 or 1.8 Ve (DG2019 Only) VL = 1.5 V, VIN = 0.4 or 1.0 Ve
Tempa
Minb
Typc
Maxb
Unit
Switch Off Leakage
Currentf
V+ = 5.5 V VNO, VNC = 1 V/4.5 V, VCOM = 4.5 V/1 V
V+ = 5.5 V, VNO, VNC = VCOM = 1 V/4.5 V
Digital Control
Input High Voltage Input Low Voltage Input Capacitance Input Current
VINH
DG2018 VL = 1.5 V VL = 1.5 V VIN = 0 or V+ DG2019 DG2018 DG2019
Full Full Full Full Full Full
1.8 1.0 0.8 0.4 9 1 1 pF mA V
VINL
Cin
IINL or IINH
Dynamic Characteristics
Turn-On Time Turn-Off Time Break-Before-Make Time Charge Injectiond Off-Isolationd Crosstalkd Source-Off Source Off Capacitanced Channel-On Channel On Capacitanced tON VNO or VNC = 3 V RL = 300 W CL = 35 pF V, W, tOFF td QINJ OIRR XTALK CNO(off) CNC(off) CNO(on) CNC(on) VIN = 0 or V+ f = 1 MHz V+, VNO or VNC = 3 V, RL = 50 W, CL = 35 pF CL = 1 nF, VGEN = 0 V, RGEN = 0 W RL = 50 W CL = 5 pF f = 1 MHz W, pF, Room Full Room Full Full Room Room Room Room Room Room Room 1 -2.46 -54 -53 7.5 7.5 30 30 pF pC dB 44 19 48 52 33 35 ns
Power Supply
Power Supply Range Power Supply Current Notes: a. b. c. d. e. f. Room = 25C, Full = as determined by the operating suffix. Typical values are for design aid only, not guaranteed nor subject to production testing. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet. Guarantee by design, nor subjected to production test. VIN = input voltage to perform proper function. Not production tested. V+ I+ VIN = 0 or V+ Full 1.8 0.01 5.5 1.0 V mA
www.vishay.com
4
Document Number: 72342 S-31644--Rev. A, 01-Aug-03
DG2018/2019
New Product
TYPICAL CHARACTERISTICS (25_C UNLESS NOTED)
rON vs. VCOM and Supply Voltage
10 T = 25_C ICOM= 10 mA V+ = 2.7 V 6 V+ = 5.5 V 4 V+ = 3.3 V 9 8 r ON - On-Resistance ( W ) 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 VCOM - Analog Voltage (V) 0 0 1 2 3 4 5 6 VCOM - Analog Voltage (V) V+ = 5.5 V 85_C 25_C -40_C
Vishay Siliconix
rON vs. Analog Voltage and Temperature
V+ = 2.7 V 85_C 25_C -40_C
8 r ON - On-Resistance ( W )
2
Supply Current vs. Temperature
10000 10 mA 1 mA I+ - Supply Current (pA) I+ - Supply Current (A) 1000 V+ = 5.5 V VIN = 0 V 100 100 mA 10 mA 1 mA 100 nA 10 nA 1 -60 0 -40 -20 0 20 40 60 80 100 0
Supply Current vs. Input Switching Frequency
10
2M
4M
6M
8M
10 M
Temperature (_C)
Input Switching Frequency (Hz)
Leakage Current vs. Temperature
10000 V+ = 5 V 1000 Leakage Current (pA) Leakage Current (pA) 150 125 100 75 50 25 0 -25 -50 -75 -100 -125 1 -60 -40 -20 0 20 40 60 80 100 -150 0.0 0.5 ICOM(off)
Leakage vs. Analog Voltage
V+= 3.3 V
INO(off), IINC(off) 100 ICOM(off) 10 ICOM(on)
ICOM(on)
INO(off), INC(off)
1.0
1.5
2.0
2.5
3.0
3.5
Temperature (_C)
VCOM, VNO, VNC - Analog Voltage (V)
Document Number: 72342 S-31644--Rev. A, 01-Aug-03
www.vishay.com
5
DG2018/2019
Vishay Siliconix
New Product
TYPICAL CHARACTERISTICS (25_C UNLESS NOTED)
Switching Time vs. Temperature vs. Supply Voltage
50 RL = 300 W tON/toff - Switching Time (ns) 40 tON V+ = 3.3 V Vth - Threshold Voltage 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 -60 0.0 -40 -20 0 20 40 60 80 100 0 1 2 3 4 5 6 Temperature (_C) V+ - Supply Voltage (V) OFF/ON
Switching Voltage vs. Supply Voltage (V+)
DG2018
ON/OFF
30
tON V+ = 5.5 V
20
tOFF V+ = 3.3 V
10
tOFF V+ = 5.5 V
1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 1.0
VIN vs. VL (Typ)
10 8 Q - Charge Injection (pC) 6 4 2 0 -2 -4 -6 1.5 2.0 2.5 3.0 3.5 VL (V) 4.0 4.5 5.0 5.5 6.0
Charge Injection at Source vs. Analog Voltage
DG2019
V+ = 5.5 V
Vth - Threshold Voltage
V+ = 3.3 V V+ = 5.5 V
V+ = 3.3 V
0
1
2
3
4
5
6
VCOM - Analog Voltage (V)
Insertion Loss, Off Isolation and Crosstalk vs. Frequency
20 0 Loss, OIRR, Xtalk (dB) -20 -40 OIRR -60 Crosstalk -80 -100 -120 100 K 1M 10 M Frequency (Hz) 100 M 1G Insertion Loss -3 dB = 150 MHz
V+ = 3.3, 5.5 V RL = 50 W
www.vishay.com
6
Document Number: 72342 S-31644--Rev. A, 01-Aug-03
DG2018/2019
New Product
TEST CIRCUITS
V+ Logic Input V+ Switch Input NO or NC IN Logic Input GND 0V CL (includes fixture and stray capacitance) VOUT + VCOM R L ) R ON RL RL 300 W CL 35 pF COM Switch Output VOUT Switch Output 0V tON tOFF
Vishay Siliconix
VINH 50% VINL
tr t 5 ns tf t 5 ns
0.9 x VOUT
Logic "1" = Switch On Logic input waveforms inverted for switches that have the opposite logic sense.
FIGURE 1. Switching Time
V+ Logic Input COM VO RL 50 W GND CL 35 pF VINH VINL tr <5 ns tf <5 ns
V+ VNO VNC NO NC IN
VNC = VNO VO Switch 0V Output
90%
tD
tD
CL (includes fixture and stray capacitance)
FIGURE 3. Break-Before-Make Interval
V+
Rgen + Vgen VIN = 0 - V+
V+ NC or NO IN GND COM VOUT CL = 1 nF
VOUT IN
DVOUT
On
Off Q = DVOUT x CL
On
IN depends on switch configuration: input polarity determined by sense of switch.
FIGURE 2. Charge Injection
Document Number: 72342 S-31644--Rev. A, 01-Aug-03 www.vishay.com
7
DG2018/2019
Vishay Siliconix
TEST CIRCUITS
V+ 10 nF V+ NC or NO IN COM COM 0V, 2.4 V IN NC or NO GND 10 nF V+ COM Meter 0 V, 2.4 V GND HP4192A Impedance Analyzer or Equivalent f = 1 MHz
New Product
V+
RL Analyzer
VCOM Off Isolation + 20 log V NO NC
FIGURE 4. Off-Isolation
FIGURE 5. Channel Off/On Capacitance
www.vishay.com
8
Document Number: 72342 S-31644--Rev. A, 01-Aug-03


▲Up To Search▲   

 
Price & Availability of DG2018

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X